Skip to content

Validate scheme

validate

Validation utilities for weighting schemes.

This module provides functions to validate survey dataframes against weighting schemes before applying weights. Validation checks include column existence, missing values, and category mismatches between the data and scheme definitions.

validate_scheme_dict(df, scheme, raise_error=True)

Validate a dataframe against a scheme dictionary.

Checks if Data matches the Scheme (Columns, Categories, NaNs).

Parameters:

Name Type Description Default
df DataFrame

The survey dataframe to check

required
scheme SchemeDict

The dictionary defining the weighting scheme

required
raise_error bool

If True, raises a ValueError on the first Critical issue found. If False, returns a DataFrame report of all issues

True

Returns:

Type Description
DataFrame or None

DataFrame report of all issues if raise_error=False, None otherwise

validate_scheme(df, scheme, raise_error=True)

Validate a dataframe against a Rim scheme object.

Checks for Columns, NaNs, and Category mismatches.

Parameters:

Name Type Description Default
df DataFrame

The survey dataframe to check

required
scheme Rim

The Rim scheme object defining the weighting scheme

required
raise_error bool

If True, raises a ValueError on the first Critical issue found. If False, returns a DataFrame report of all issues

True

Returns:

Type Description
DataFrame or None

DataFrame report of all issues if raise_error=False, None otherwise