families
Reference: https://paulbuerkner.com/brms/reference/brmsfamily.html
Attributes¶
FitResult = IDResult[IDBrm]
module-attribute
¶
Classes¶
IDResult
dataclass
¶
Bases: Generic[T_idata], RListVectorExtension
Generic result container with arviz and R objects.
Attributes:
| Name | Type | Description |
|---|---|---|
idata |
InferenceData
|
arviz InferenceData object |
r |
ListVector
|
R object from brms |
Source code in brmspy/types/brms_results.py
Functions¶
kwargs_r(kwargs)
¶
Convert Python keyword arguments to R-compatible format.
Convenience function that applies py_to_r() to all values in a keyword arguments dictionary, preparing them for R function calls.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
kwargs
|
dict or None
|
Dictionary of keyword arguments where values may be Python objects (dicts, lists, DataFrames, arrays, etc.) |
required |
Returns:
| Type | Description |
|---|---|
dict
|
Dictionary with same keys but R-compatible values, or empty dict if None |
Notes
This is a thin wrapper around py_to_r() that operates on dictionaries.
It's commonly used to prepare keyword arguments for R function calls via rpy2.
Examples:
from brmspy.helpers.conversion import kwargs_r
import pandas as pd
import numpy as np
# Prepare kwargs for R function
py_kwargs = {
'data': pd.DataFrame({'y': [1, 2], 'x': [1, 2]}),
'prior': {'b': [0, 1]},
'chains': 4,
'iter': 2000
}
r_kwargs = kwargs_r(py_kwargs)
# All values converted to R objects
# Can now call: r_function(**r_kwargs)
See Also
py_to_r : Underlying conversion function for individual values brmspy.brms.fit : Uses this to prepare user kwargs for R
Source code in brmspy/helpers/_rpy2/_conversion.py
brmsfamily(family, link=None, link_sigma='log', link_shape='log', link_nu='logm1', link_phi='log', link_kappa='log', link_beta='log', link_zi='logit', link_hu='logit', link_zoi='logit', link_coi='logit', link_disc='log', link_bs='log', link_ndt='log', link_bias='logit', link_xi='log1p', link_alpha='identity', link_quantile='logit', threshold='flexible', refcat=None, **kwargs)
¶
Family objects provide a convenient way to specify the details of the models used by many model fitting functions. The family functions presented here are for use with brms only and will not work with other model fitting functions such as glm or glmer. However, the standard family functions as described in family will work with brms.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
family
|
A character string naming the distribution family of the response variable to be used in the model. Currently, the following families are supported: gaussian, student, binomial, bernoulli, beta-binomial, poisson, negbinomial, geometric, Gamma, skew_normal, lognormal, shifted_lognormal, exgaussian, wiener, inverse.gaussian, exponential, weibull, frechet, Beta, dirichlet, von_mises, asym_laplace, gen_extreme_value, categorical, multinomial, cumulative, cratio, sratio, acat, hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal, hurdle_cumulative, zero_inflated_binomial, zero_inflated_beta_binomial, zero_inflated_beta, zero_inflated_negbinomial, zero_inflated_poisson, and zero_one_inflated_beta. |
required | |
link
|
str | None
|
A specification for the model link function. This can be a name/expression or character string. See the 'Details' section for more information on link functions supported by each family. |
None
|
link_sigma
|
str
|
Link of auxiliary parameter sigma if being predicted. |
'log'
|
link_shape
|
str
|
Link of auxiliary parameter shape if being predicted. |
'log'
|
link_nu
|
str
|
Link of auxiliary parameter nu if being predicted. |
'logm1'
|
link_phi
|
str
|
Link of auxiliary parameter phi if being predicted. |
'log'
|
link_kappa
|
str
|
Link of auxiliary parameter kappa if being predicted. |
'log'
|
link_beta
|
str
|
Link of auxiliary parameter beta if being predicted. |
'log'
|
link_zi
|
str
|
Link of auxiliary parameter zi if being predicted. |
'logit'
|
link_hu
|
str
|
Link of auxiliary parameter hu if being predicted. |
'logit'
|
link_zoi
|
str
|
Link of auxiliary parameter zoi if being predicted. |
'logit'
|
link_coi
|
str
|
Link of auxiliary parameter coi if being predicted. |
'logit'
|
link_disc
|
str
|
Link of auxiliary parameter disc if being predicted. |
'log'
|
link_bs
|
str
|
Link of auxiliary parameter bs if being predicted. |
'log'
|
link_ndt
|
str
|
Link of auxiliary parameter ndt if being predicted. |
'log'
|
link_bias
|
str
|
Link of auxiliary parameter bias if being predicted. |
'logit'
|
link_xi
|
str
|
Link of auxiliary parameter xi if being predicted. |
'log1p'
|
link_alpha
|
str
|
Link of auxiliary parameter alpha if being predicted. |
'identity'
|
link_quantile
|
str
|
Link of auxiliary parameter quantile if being predicted. |
'logit'
|
threshold
|
str
|
A character string indicating the type of thresholds (i.e. intercepts) used in an ordinal model. "flexible" provides the standard unstructured thresholds, "equidistant" restricts the distance between consecutive thresholds to the same value, and "sum_to_zero" ensures the thresholds sum to zero. |
'flexible'
|
refcat
|
str | None
|
Optional name of the reference response category used in categorical, multinomial, dirichlet and logistic_normal models. If NULL (the default), the first category is used as the reference. If NA, all categories will be predicted, which requires strong priors or carefully specified predictor terms in order to lead to an identified model. |
None
|
Source code in brmspy/_brms_functions/families.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | |
family(fit, **kwargs)
¶
Extract family object from a fitted model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fit
|
FitResult or ListSexpVector
|
Fitted brms model |
required |
Source code in brmspy/_brms_functions/families.py
student(link='identity', link_sigma='log', link_nu='logm1', **kwargs)
¶
Student's t distribution for robust regression.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
link_nu
|
str
|
Link function for degrees of freedom parameter |
'logm1'
|
Source code in brmspy/_brms_functions/families.py
bernoulli(link='logit', **kwargs)
¶
Bernoulli distribution for binary 0/1 outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the probability parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
beta_binomial(link='logit', link_phi='log', **kwargs)
¶
Beta-binomial distribution for overdispersed binomial data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the probability parameter |
'logit'
|
link_phi
|
str
|
Link function for the precision parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
negbinomial(link='log', link_shape='log', **kwargs)
¶
Negative binomial distribution for overdispersed count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_shape
|
str
|
Link function for the shape parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
negbinomial2(link='log', link_sigma='log', **kwargs)
¶
geometric(link='log', **kwargs)
¶
Geometric distribution for count data (negative binomial with shape=1).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
Source code in brmspy/_brms_functions/families.py
discrete_weibull(link='logit', link_shape='log', **kwargs)
¶
com_poisson(link='log', link_shape='log', **kwargs)
¶
lognormal(link='identity', link_sigma='log', **kwargs)
¶
Lognormal distribution for positive continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean on log scale |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
shifted_lognormal(link='identity', link_sigma='log', link_ndt='log', **kwargs)
¶
Shifted lognormal distribution with non-decision time parameter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
link_ndt
|
str
|
Link function for non-decision time parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
skew_normal(link='identity', link_sigma='log', link_alpha='identity', **kwargs)
¶
Skew normal distribution for asymmetric continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
link_alpha
|
str
|
Link function for skewness parameter |
'identity'
|
Source code in brmspy/_brms_functions/families.py
exponential(link='log', **kwargs)
¶
Exponential distribution for time-to-event data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the rate parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
weibull(link='log', link_shape='log', **kwargs)
¶
Weibull distribution for survival and reliability analysis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the scale parameter |
'log'
|
link_shape
|
str
|
Link function for the shape parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
frechet(link='log', link_nu='logm1', **kwargs)
¶
Frechet distribution for extreme value analysis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the scale parameter |
'log'
|
link_nu
|
str
|
Link function for the shape parameter |
'logm1'
|
Source code in brmspy/_brms_functions/families.py
gen_extreme_value(link='identity', link_sigma='log', link_xi='log1p', **kwargs)
¶
Generalized extreme value distribution for extreme events.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the location parameter |
'identity'
|
link_sigma
|
str
|
Link function for the scale parameter |
'log'
|
link_xi
|
str
|
Link function for the shape parameter |
'log1p'
|
Source code in brmspy/_brms_functions/families.py
exgaussian(link='identity', link_sigma='log', link_beta='log', **kwargs)
¶
Ex-Gaussian distribution for reaction time data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for Gaussian SD parameter |
'log'
|
link_beta
|
str
|
Link function for exponential rate parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
wiener(link='identity', link_bs='log', link_ndt='log', link_bias='logit', **kwargs)
¶
Wiener diffusion model for two-choice reaction time data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for drift rate |
'identity'
|
link_bs
|
str
|
Link function for boundary separation |
'log'
|
link_ndt
|
str
|
Link function for non-decision time |
'log'
|
link_bias
|
str
|
Link function for initial bias |
'logit'
|
Source code in brmspy/_brms_functions/families.py
Beta(link='logit', link_phi='log', **kwargs)
¶
Beta distribution for data between 0 and 1.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'logit'
|
link_phi
|
str
|
Link function for the precision parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
xbeta(link='logit', link_phi='log', link_kappa='log', **kwargs)
¶
Extended beta distribution with additional shape parameter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'logit'
|
link_phi
|
str
|
Link function for precision parameter |
'log'
|
link_kappa
|
str
|
Link function for kappa shape parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
dirichlet(link='logit', link_phi='log', refcat=None, **kwargs)
¶
Dirichlet distribution for compositional data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'logit'
|
link_phi
|
str
|
Link function for the precision parameter |
'log'
|
refcat
|
str
|
Reference category |
None
|
Source code in brmspy/_brms_functions/families.py
dirichlet2(link='log', refcat=None, **kwargs)
¶
Source code in brmspy/_brms_functions/families.py
logistic_normal(link='identity', link_sigma='log', refcat=None, **kwargs)
¶
Logistic-normal distribution for compositional data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
refcat
|
str
|
Reference category |
None
|
Source code in brmspy/_brms_functions/families.py
von_mises(link='tan_half', link_kappa='log', **kwargs)
¶
Von Mises distribution for circular/directional data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean direction |
'tan_half'
|
link_kappa
|
str
|
Link function for concentration parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
asym_laplace(link='identity', link_sigma='log', link_quantile='logit', **kwargs)
¶
Asymmetric Laplace distribution for quantile regression.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the location |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
link_quantile
|
str
|
Link function for the quantile parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_asym_laplace(link='identity', link_sigma='log', link_quantile='logit', link_zi='logit', **kwargs)
¶
Source code in brmspy/_brms_functions/families.py
cox(link='log', **kwargs)
¶
Cox proportional hazards model for survival data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the hazard rate |
'log'
|
Source code in brmspy/_brms_functions/families.py
hurdle_poisson(link='log', link_hu='logit', **kwargs)
¶
Hurdle Poisson distribution for zero-inflated count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_hu
|
str
|
Link function for hurdle parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
hurdle_negbinomial(link='log', link_shape='log', link_hu='logit', **kwargs)
¶
Hurdle negative binomial for overdispersed zero-inflated count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_shape
|
str
|
Link function for shape parameter |
'log'
|
link_hu
|
str
|
Link function for hurdle parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
hurdle_gamma(link='log', link_shape='log', link_hu='logit', **kwargs)
¶
Hurdle Gamma distribution for zero-inflated positive continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_shape
|
str
|
Link function for shape parameter |
'log'
|
link_hu
|
str
|
Link function for hurdle parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
hurdle_lognormal(link='identity', link_sigma='log', link_hu='logit', **kwargs)
¶
Hurdle lognormal for zero-inflated positive continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for sigma parameter |
'log'
|
link_hu
|
str
|
Link function for hurdle parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
hurdle_cumulative(link='logit', link_hu='logit', link_disc='log', threshold='flexible', **kwargs)
¶
Hurdle cumulative for zero-inflated ordinal data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the ordinal response |
'logit'
|
link_hu
|
str
|
Link function for hurdle parameter |
'logit'
|
link_disc
|
str
|
Link function for discrimination parameter |
'log'
|
threshold
|
str
|
Type of threshold structure |
'flexible'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_beta(link='logit', link_phi='log', link_zi='logit', **kwargs)
¶
Zero-inflated beta for data between 0 and 1 with excess zeros.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'logit'
|
link_phi
|
str
|
Link function for precision parameter |
'log'
|
link_zi
|
str
|
Link function for zero-inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_one_inflated_beta(link='logit', link_phi='log', link_zoi='logit', link_coi='logit', **kwargs)
¶
Zero-one-inflated beta for data between 0 and 1 with excess zeros and ones.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'logit'
|
link_phi
|
str
|
Link function for precision parameter |
'log'
|
link_zoi
|
str
|
Link function for zero-or-one inflation parameter |
'logit'
|
link_coi
|
str
|
Link function for conditional one inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_poisson(link='log', link_zi='logit', **kwargs)
¶
Zero-inflated Poisson for count data with excess zeros.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_zi
|
str
|
Link function for zero-inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_negbinomial(link='log', link_shape='log', link_zi='logit', **kwargs)
¶
Zero-inflated negative binomial for overdispersed count data with excess zeros.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_shape
|
str
|
Link function for shape parameter |
'log'
|
link_zi
|
str
|
Link function for zero-inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_binomial(link='logit', link_zi='logit', **kwargs)
¶
Zero-inflated binomial for binary count data with excess zeros.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for probability parameter |
'logit'
|
link_zi
|
str
|
Link function for zero-inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
zero_inflated_beta_binomial(link='logit', link_phi='log', link_zi='logit', **kwargs)
¶
Zero-inflated beta-binomial for overdispersed binomial data with excess zeros.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for probability parameter |
'logit'
|
link_phi
|
str
|
Link function for precision parameter |
'log'
|
link_zi
|
str
|
Link function for zero-inflation parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
categorical(link='logit', refcat=None, **kwargs)
¶
Categorical distribution for unordered multi-category outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for category probabilities |
'logit'
|
refcat
|
str
|
Reference category |
None
|
Source code in brmspy/_brms_functions/families.py
multinomial(link='logit', refcat=None, **kwargs)
¶
Multinomial distribution for count data across multiple categories.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for category probabilities |
'logit'
|
refcat
|
str
|
Reference category |
None
|
Source code in brmspy/_brms_functions/families.py
dirichlet_multinomial(link='logit', link_phi='log', refcat=None, **kwargs)
¶
Dirichlet-multinomial for overdispersed categorical count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for category probabilities |
'logit'
|
link_phi
|
str
|
Link function for precision parameter |
'log'
|
refcat
|
str
|
Reference category |
None
|
Source code in brmspy/_brms_functions/families.py
cumulative(link='logit', link_disc='log', threshold='flexible', **kwargs)
¶
Cumulative (proportional odds) model for ordinal outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for cumulative probabilities |
'logit'
|
link_disc
|
str
|
Link function for discrimination parameter |
'log'
|
threshold
|
str
|
Type of threshold structure |
'flexible'
|
Source code in brmspy/_brms_functions/families.py
sratio(link='logit', link_disc='log', threshold='flexible', **kwargs)
¶
Sequential (stopping) ratio model for ordinal outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for sequential ratios |
'logit'
|
link_disc
|
str
|
Link function for discrimination parameter |
'log'
|
threshold
|
str
|
Type of threshold structure |
'flexible'
|
Source code in brmspy/_brms_functions/families.py
cratio(link='logit', link_disc='log', threshold='flexible', **kwargs)
¶
Continuation ratio model for ordinal outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for continuation ratios |
'logit'
|
link_disc
|
str
|
Link function for discrimination parameter |
'log'
|
threshold
|
str
|
Type of threshold structure |
'flexible'
|
Source code in brmspy/_brms_functions/families.py
acat(link='logit', link_disc='log', threshold='flexible', **kwargs)
¶
Adjacent category model for ordinal outcomes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for adjacent category ratios |
'logit'
|
link_disc
|
str
|
Link function for discrimination parameter |
'log'
|
threshold
|
str
|
Type of threshold structure |
'flexible'
|
Source code in brmspy/_brms_functions/families.py
gaussian(link='identity', link_sigma='log', **kwargs)
¶
Gaussian (normal) distribution for continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'identity'
|
link_sigma
|
str
|
Link function for the standard deviation |
'log'
|
Source code in brmspy/_brms_functions/families.py
poisson(link='log', **kwargs)
¶
Poisson distribution for count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the rate parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
binomial(link='logit', **kwargs)
¶
Binomial distribution for binary count data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the probability parameter |
'logit'
|
Source code in brmspy/_brms_functions/families.py
Gamma(link='log', link_shape='log', **kwargs)
¶
Gamma distribution for positive continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'log'
|
link_shape
|
str
|
Link function for the shape parameter |
'log'
|
Source code in brmspy/_brms_functions/families.py
inverse_gaussian(link='1/mu^2', link_shape='log', **kwargs)
¶
Inverse Gaussian distribution for positive continuous data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
link
|
str
|
Link function for the mean |
'1/mu^2'
|
link_shape
|
str
|
Link function for the shape parameter |
'log'
|