prior
Prior specification helpers.
This module provides helpers for constructing brms-compatible prior specifications and for querying the default priors implied by a model.
Notes
Executed inside the worker process that hosts the embedded R session.
Classes¶
PriorSpec
dataclass
¶
Python representation of a brms prior specification.
This dataclass provides a typed interface to brms::prior_string() arguments,
allowing Python developers to specify priors with IDE autocomplete and type
checking. Use the prior() factory function to create
instances.
Attributes:
| Name | Type | Description |
|---|---|---|
prior |
str
|
Prior distribution as string (e.g., |
class_ |
(str, optional)
|
Parameter class: |
coef |
(str, optional)
|
Specific coefficient name for class-level priors. |
group |
(str, optional)
|
Grouping variable for hierarchical effects. |
dpar |
(str, optional)
|
Distributional parameter (e.g., |
resp |
(str, optional)
|
Response variable for multivariate models. |
nlpar |
(str, optional)
|
Non-linear parameter name. |
lb |
(float, optional)
|
Lower bound for truncated priors. |
ub |
(float, optional)
|
Upper bound for truncated priors. |
See Also
prior : Factory function to create PriorSpec instances.
brms::prior_string : R documentation
Examples:
Create prior specifications (prefer using prior()):
from brmspy.types import PriorSpec
# Fixed effect prior
p1 = PriorSpec(prior="normal(0, 1)", class_="b")
# Group-level SD prior
p2 = PriorSpec(prior="exponential(2)", class_="sd", group="patient")
# Coefficient-specific prior with bounds
p3 = PriorSpec(prior="normal(0, 1)", class_="b", coef="age", lb=0)
Source code in brmspy/types/brms_results.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | |
Attributes¶
prior
instance-attribute
¶
class_ = None
class-attribute
instance-attribute
¶
coef = None
class-attribute
instance-attribute
¶
group = None
class-attribute
instance-attribute
¶
dpar = None
class-attribute
instance-attribute
¶
resp = None
class-attribute
instance-attribute
¶
nlpar = None
class-attribute
instance-attribute
¶
lb = None
class-attribute
instance-attribute
¶
ub = None
class-attribute
instance-attribute
¶
Functions¶
to_brms_kwargs()
¶
Convert PriorSpec to keyword arguments for brms::prior_string().
Maps Python dataclass fields to R function arguments, handling
the class_ -> class parameter name conversion.
Returns:
| Type | Description |
|---|---|
dict
|
Keyword arguments ready for brms::prior_string() |
Examples:
from brmspy import prior
p = prior("normal(0, 1)", class_="b", coef="age")
kwargs = p.to_brms_kwargs()
print(kwargs)
# {'prior': 'normal(0, 1)', 'class': 'b', 'coef': 'age'}
Source code in brmspy/types/brms_results.py
__init__(prior, class_=None, coef=None, group=None, dpar=None, resp=None, nlpar=None, lb=None, ub=None)
¶
RListVectorExtension
dataclass
¶
Generic result container with R objects.
Attributes:
| Name | Type | Description |
|---|---|---|
r |
ListVector
|
R object from brms |
Source code in brmspy/types/brms_results.py
FormulaConstruct
dataclass
¶
A composite formula expression built from parts.
FormulaConstruct stores a tree of nodes (FormulaPart and/or R objects)
representing expressions combined with +. It is primarily created by
calling the public formula helpers exposed by brmspy.brms.
Notes
The + operator supports grouping:
a + b + cbecomes a single summand (one “group”)(a + b) + (a + b)becomes two summands (two “groups”)
Use iter_summands()
to iterate over these groups in a deterministic way.
Source code in brmspy/types/formula_dsl.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | |
Attributes¶
_parts
instance-attribute
¶
Functions¶
_formula_parse(obj)
classmethod
¶
Convert a supported value into a FormulaConstruct.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
obj
|
Other
|
One of: |
required |
Returns:
| Type | Description |
|---|---|
FormulaConstruct
|
|
Source code in brmspy/types/formula_dsl.py
__add__(other)
¶
Combine two formula expressions with +.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
Other
|
Value to add. Strings are treated as |
required |
Returns:
| Type | Description |
|---|---|
FormulaConstruct
|
New combined expression. |
Source code in brmspy/types/formula_dsl.py
__radd__(other)
¶
iter_summands()
¶
Iterate over arithmetic groups (summands).
Returns:
| Type | Description |
|---|---|
Iterator[tuple[FormulaPart | ProxyListSexpVector, ...]]
|
Each yielded tuple represents one summand/group. |
Examples:
from brmspy.brms import bf, gaussian, set_rescor
f = bf("y ~ x") + gaussian() + set_rescor(True)
for summand in f.iter_summands():
print(summand)
Source code in brmspy/types/formula_dsl.py
__iter__()
¶
Alias for iter_summands().
iterate()
¶
Iterate over all leaf nodes in left-to-right order.
This flattens the expression tree, unlike
iter_summands(), which
respects grouping.
Returns:
| Type | Description |
|---|---|
Iterator[FormulaPart | ProxyListSexpVector]
|
|
Source code in brmspy/types/formula_dsl.py
__str__()
¶
_pretty(node, _outer=True)
¶
Source code in brmspy/types/formula_dsl.py
__repr__()
¶
__init__(_parts)
¶
Functions¶
_execute_formula(formula)
¶
Source code in brmspy/_brms_functions/formula.py
kwargs_r(kwargs)
¶
Convert Python keyword arguments to R-compatible format.
Convenience function that applies py_to_r() to all values in a keyword arguments dictionary, preparing them for R function calls.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
kwargs
|
dict or None
|
Dictionary of keyword arguments where values may be Python objects (dicts, lists, DataFrames, arrays, etc.) |
required |
Returns:
| Type | Description |
|---|---|
dict
|
Dictionary with same keys but R-compatible values, or empty dict if None |
Notes
This is a thin wrapper around py_to_r() that operates on dictionaries.
It's commonly used to prepare keyword arguments for R function calls via rpy2.
Examples:
from brmspy.helpers.conversion import kwargs_r
import pandas as pd
import numpy as np
# Prepare kwargs for R function
py_kwargs = {
'data': pd.DataFrame({'y': [1, 2], 'x': [1, 2]}),
'prior': {'b': [0, 1]},
'chains': 4,
'iter': 2000
}
r_kwargs = kwargs_r(py_kwargs)
# All values converted to R objects
# Can now call: r_function(**r_kwargs)
See Also
py_to_r : Underlying conversion function for individual values brmspy.brms.fit : Uses this to prepare user kwargs for R
Source code in brmspy/helpers/_rpy2/_conversion.py
py_to_r(obj)
¶
Convert arbitrary Python objects to R objects via rpy2.
Comprehensive converter that handles nested structures (dicts, lists), DataFrames, arrays, and scalars. Uses rpy2's converters with special handling for dictionaries (→ R named lists) and lists of dicts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
obj
|
any
|
Python object to convert. Supported types: - None → R NULL - dict → R named list (ListVector), recursively - list/tuple of dicts → R list of named lists - list/tuple (other) → R vector or list - pd.DataFrame → R data.frame - np.ndarray → R vector/matrix - scalars (int, float, str, bool) → R atomic types |
required |
Returns:
| Type | Description |
|---|---|
rpy2 R object
|
R representation of the Python object |
Notes
Conversion Rules:
- None: → R NULL
- DataFrames: → R data.frame (via pandas2ri)
- Dictionaries: → R named list (ListVector), recursively converting values
- Lists of dicts: → R list with 1-based indexed names containing named lists
- Other lists/tuples: → R vectors or lists (via rpy2 default)
- NumPy arrays: → R vectors/matrices (via numpy2ri)
- Scalars: → R atomic values
Recursive Conversion:
Dictionary values are recursively converted, allowing nested structures:
List of Dicts:
Lists containing only dicts are converted to R lists with 1-based indexing:
Examples:
from brmspy.helpers.conversion import py_to_r
import numpy as np
import pandas as pd
# Scalars
py_to_r(5) # R: 5
py_to_r("hello") # R: "hello"
py_to_r(None) # R: NULL
# Arrays
py_to_r(np.array([1, 2, 3])) # R: c(1, 2, 3)
# DataFrames
df = pd.DataFrame({'x': [1, 2], 'y': [3, 4]})
py_to_r(df) # R: data.frame(x = c(1, 2), y = c(3, 4))
See Also
r_to_py : Convert R objects back to Python kwargs_r : Convert keyword arguments dict for R function calls brmspy.brms.fit : Uses this for converting data to R
Source code in brmspy/helpers/_rpy2/_converters/_dispatch.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | |
r_to_py(obj, shm=None)
¶
Convert R objects to Python objects via rpy2.
Comprehensive converter that handles R lists (named/unnamed), vectors, formulas, and language objects. Provides sensible Python equivalents for all R types with special handling for edge cases.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
obj
|
rpy2 R object
|
R object to convert to Python |
required |
Returns:
| Type | Description |
|---|---|
any
|
Python representation of the R object: - R NULL → None - Named list → dict (recursively) - Unnamed list → list (recursively) - Length-1 vector → scalar (int, float, str, bool) - Length-N vector → list of scalars - Formula/Language object → str (descriptive representation) - Other objects → default rpy2 conversion or str fallback |
Notes
Conversion Rules:
- R NULL: → Python None
- Atomic vectors (numeric, character, logical):
- Length 1: → Python scalar (int, float, str, bool)
- Length >1: → Python list of scalars
- Named lists (ListVector with names): → Python dict, recursively
- Unnamed lists: → Python list, recursively
- Formulas (e.g.,
y ~ x): → String representation - Language objects (calls, expressions): → String representation
- Functions: → String representation
- Everything else: Try default rpy2 conversion, fallback to string
Recursive Conversion:
List elements and dictionary values are recursively converted:
Safe Fallback:
R language objects, formulas, and functions are converted to descriptive strings rather than attempting complex conversions that might fail.
Examples:
from brmspy.helpers.conversion import r_to_py
import rpy2.robjects as ro
# R NULL
r_to_py(ro.NULL) # None
# Scalars
r_to_py(ro.IntVector([5])) # 5
r_to_py(ro.FloatVector([3.14])) # 3.14
r_to_py(ro.StrVector(["hello"])) # "hello"
# Vectors
r_to_py(ro.IntVector([1, 2, 3])) # [1, 2, 3]
See Also
py_to_r : Convert Python objects to R brmspy.brms.summary : Returns Python-friendly summary dict
Source code in brmspy/helpers/_rpy2/_converters/_dispatch.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | |
prior(prior, class_=None, coef=None, group=None, dpar=None, resp=None, nlpar=None, lb=None, ub=None, **kwargs)
¶
Create a brms-style prior specification.
This function mirrors the behavior of brms::prior_string() and allows
specifying priors for regression parameters, group-level effects, nonlinear
parameters, distributional parameters, and more — using a typed Python
interface. All arguments correspond directly to the parameters of
prior_string() in brms.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prior
|
str
|
The prior definition as a string, exactly as brms expects it. Examples include :: |
required |
class_
|
str
|
Parameter class (e.g. |
None
|
coef
|
str
|
Coefficient name for class-level effects. |
None
|
group
|
str
|
Grouping variable for hierarchical/multilevel effects. |
None
|
dpar
|
str
|
Distributional parameter (e.g. |
None
|
resp
|
str
|
Response variable name for multivariate models. |
None
|
nlpar
|
str
|
Nonlinear parameter name if using nonlinear formulas. |
None
|
lb
|
float
|
Lower bound for truncated priors. |
None
|
ub
|
float
|
Upper bound for truncated priors. |
None
|
**kwargs
|
Any
|
Any additional keyword arguments supported by |
{}
|
Returns:
| Type | Description |
|---|---|
PriorSpec
|
A typed prior specification object used by |
See Also
brms::prior_string : R documentation
Notes
This function does not validate the prior expression string itself — validation occurs inside brms.
Examples:
from brmspy.brms import prior
p_intercept = prior("student_t(3, 0, 1.95)", class_="Intercept")
p_slope = prior("normal(0, 1)", class_="b", coef="age")
p_sd = prior("exponential(2)", class_="sd", group="region")
p_trunc = prior("normal(0, 1)", class_="b", coef="income", lb=0)
Source code in brmspy/_brms_functions/prior.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | |
get_prior(formula, data=None, family='gaussian', **kwargs)
¶
Get default priors for a model specification.
Wrapper around R brms::get_prior().
Returns a DataFrame with default priors for each parameter class in the specified brms model. Useful for reviewing and customizing priors before fitting.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
formula
|
str or FormulaConstruct
|
Model formula (e.g. |
required |
data
|
DataFrame or dict
|
Dataset containing model variables. Required for data-dependent priors |
None
|
family
|
str or ListSexpVector
|
Distribution family (e.g., "gaussian", "poisson", "binomial") |
"gaussian"
|
**kwargs
|
Additional arguments passed to brms::get_prior() (e.g., autocor, data2, knots, drop_unused_levels) |
{}
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns: prior, class, coef, group, resp, dpar, nlpar, lb, ub, source. Each row represents a parameter or parameter class that can have a custom prior. |
See Also
default_prior : Generic function for getting default priors prior : Create custom prior specifications brms::get_prior : R documentation
Examples:
from brmspy import brms
from brmspy.brms import prior
priors_df = brms.get_prior("y ~ x", data=df)
custom_priors = [
prior("normal(0, 0.5)", class_="b"),
prior("exponential(2)", class_="sigma"),
]
fit = brms.brm("y ~ x", data=df, priors=custom_priors, chains=4)
Source code in brmspy/_brms_functions/prior.py
default_prior(object, data=None, family='gaussian', **kwargs)
¶
Get default priors for brms model parameters (generic function).
Wrapper around R brms::default_prior().
Generic function to retrieve default prior specifications for all parameters in a brms model. Accepts formula objects, brmsformula objects, or other model specification objects. This is the generic version of get_prior().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
object
|
str, FormulaResult, or ListSexpVector
|
Model specification: formula string, brmsformula object, mvbrmsformula, or any object that can be coerced to these classes |
required |
data
|
DataFrame or dict
|
Dataset containing model variables. Required for data-dependent priors |
None
|
family
|
str or ListSexpVector
|
Distribution family (e.g., "gaussian", "poisson", "binomial"). Can be a list of families for multivariate models |
"gaussian"
|
**kwargs
|
Additional arguments passed to brms::get_prior() (e.g., autocor, data2, knots, drop_unused_levels, sparse) |
{}
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns: prior, class, coef, group, resp, dpar, nlpar, lb, ub, source. Each row specifies a parameter class with its default prior. The 'prior' column is empty except for internal defaults. |
See Also
get_prior : Convenience function with formula parameter prior : Create custom prior specifications brms::default_prior : R documentation
Examples:
Get default priors for a Poisson model:
from brmspy import brms
priors = brms.default_prior(
object="count ~ zAge + zBase * Trt + (1|patient)",
data=epilepsy,
family="poisson"
)
print(priors)
Use with formula object:
from brmspy import brms
f = brms.formula("y ~ x + (1|group)")
priors = brms.default_prior(f, data=df, family="gaussian")
Source code in brmspy/_brms_functions/prior.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |